Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.
As a differentiable function of a complex variable is equal to the Function series given by its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable, that is, holomorphic functions. The concept can be extended to functions of several complex variables.
Complex analysis is contrasted with real analysis, which deals with the study of and functions of a real variable.
For any complex function, the values from the domain and their images in the range may be separated into Real number and Imaginary number parts:
where are all real-valued.
In other words, a complex function may be decomposed into
i.e., into two real-valued functions (, ) of two real variables (, ).
Similarly, any complex-valued function on an arbitrary set (is isomorphic to, and therefore, in that sense, it) can be considered as an ordered pair of two real-valued functions: or, alternatively, as a vector-valued function from into
Some properties of complex-valued functions (such as continuity) are nothing more than the corresponding properties of vector valued functions of two real variables. Other concepts of complex analysis, such as differentiability, are direct generalizations of the similar concepts for real functions, but may have very different properties. In particular, every differentiable complex function is analytic (see next section), and two differentiable functions that are equal in a neighborhood of a point are equal on the intersection of their domain (if the domains are connected space). The latter property is the basis of the principle of analytic continuation which allows extending every real analytic function in a unique way for getting a complex analytic function whose domain is the whole complex plane with a finite number of curve arcs removed. Many basic and special complex functions are defined in this way, including the complex exponential function, complex logarithm functions, and trigonometric functions.
Superficially, this definition is formally analogous to that of the derivative of a real function. However, complex derivatives and differentiable functions behave in significantly different ways compared to their real counterparts. In particular, for this limit to exist, the value of the difference quotient must approach the same complex number, regardless of the manner in which we approach in the complex plane. Consequently, complex differentiability has much stronger implications than real differentiability. For instance, holomorphic functions are infinitely differentiable, whereas the existence of the nth derivative need not imply the existence of the ( n + 1)th derivative for real functions. Furthermore, all holomorphic functions satisfy the stronger condition of analyticity, meaning that the function is, at every point in its domain, locally given by a convergent power series. In essence, this means that functions holomorphic on can be approximated arbitrarily well by polynomials in some neighborhood of every point in . This stands in sharp contrast to differentiable real functions; there are infinitely differentiable real functions that are nowhere analytic; see .
Most elementary functions, including the exponential function, the trigonometric functions, and all polynomial, extended appropriately to complex arguments as functions are holomorphic over the entire complex plane, making them entire functions, while rational functions , where p and q are polynomials, are holomorphic on domains that exclude points where q is zero. Such functions that are holomorphic everywhere except a set of isolated points are known as meromorphic functions. On the other hand, the functions and are not holomorphic anywhere on the complex plane, as can be shown by their failure to satisfy the Cauchy–Riemann conditions (see below).
An important property of holomorphic functions is the relationship between the partial derivatives of their real and imaginary components, known as the Cauchy–Riemann conditions. If , defined by where is holomorphic on a region then for all ,
Holomorphic functions exhibit some remarkable features. For instance, Picard theorem asserts that the range of an entire function can take only three possible forms: or for some In other words, if two distinct complex numbers and are not in the range of an entire function then is a constant function. Moreover, a holomorphic function on a connected open set is determined by its restriction to any nonempty open subset.
A bounded function that is holomorphic in the entire complex plane must be constant; this is Liouville's theorem. It can be used to provide a natural and short proof for the fundamental theorem of algebra which states that the field of complex numbers is algebraically closed.
If a function is holomorphic throughout a Connected space domain then its values are fully determined by its values on any smaller subdomain. The function on the larger domain is said to be analytically continued from its values on the smaller domain. This allows the extension of the definition of functions, such as the Riemann zeta function, which are initially defined in terms of infinite sums that converge only on limited domains to almost the entire complex plane. Sometimes, as in the case of the natural logarithm, it is impossible to analytically continue a holomorphic function to a non-simply connected domain in the complex plane but it is possible to extend it to a holomorphic function on a closely related surface known as a Riemann surface.
All this refers to complex analysis in one variable. There is also a very rich theory of complex analysis in more than one complex dimension in which the analytic properties such as power series expansion carry over whereas most of the geometric properties of holomorphic functions in one complex dimension (such as conformality) do not carry over. The Riemann mapping theorem about the conformal relationship of certain domains in the complex plane, which may be the most important result in the one-dimensional theory, fails dramatically in higher dimensions.
A major application of certain complex spaces is in quantum mechanics as .
|
|